Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1849, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748565

RESUMEN

Although PARP inhibitors (PARPi) target homologous recombination defective tumours, drug resistance frequently emerges, often via poorly understood mechanisms. Here, using genome-wide and high-density CRISPR-Cas9 "tag-mutate-enrich" mutagenesis screens, we identify close to full-length mutant forms of PARP1 that cause in vitro and in vivo PARPi resistance. Mutations both within and outside of the PARP1 DNA-binding zinc-finger domains cause PARPi resistance and alter PARP1 trapping, as does a PARP1 mutation found in a clinical case of PARPi resistance. This reinforces the importance of trapped PARP1 as a cytotoxic DNA lesion and suggests that PARP1 intramolecular interactions might influence PARPi-mediated cytotoxicity. PARP1 mutations are also tolerated in cells with a pathogenic BRCA1 mutation where they result in distinct sensitivities to chemotherapeutic drugs compared to other mechanisms of PARPi resistance (BRCA1 reversion, 53BP1, REV7 (MAD2L2) mutation), suggesting that the underlying mechanism of PARPi resistance that emerges could influence the success of subsequent therapies.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Anciano , Animales , Proteína BRCA1/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Análisis Mutacional de ADN/métodos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Embrionarias de Ratones , Mutagénesis , Neoplasias/genética , Neoplasias/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Mutación Puntual , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Medicina de Precisión/métodos , Secuenciación Completa del Genoma/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Dedos de Zinc/genética
2.
Mol Cancer Ther ; 16(9): 2022-2034, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28619759

RESUMEN

Although PARP inhibitors target BRCA1- or BRCA2-mutant tumor cells, drug resistance is a problem. PARP inhibitor resistance is sometimes associated with the presence of secondary or "revertant" mutations in BRCA1 or BRCA2 Whether secondary mutant tumor cells are selected for in a Darwinian fashion by treatment is unclear. Furthermore, how PARP inhibitor resistance might be therapeutically targeted is also poorly understood. Using CRISPR mutagenesis, we generated isogenic tumor cell models with secondary BRCA1 or BRCA2 mutations. Using these in heterogeneous in vitro culture or in vivo xenograft experiments in which the clonal composition of tumor cell populations in response to therapy was monitored, we established that PARP inhibitor or platinum salt exposure selects for secondary mutant clones in a Darwinian fashion, with the periodicity of PARP inhibitor administration and the pretreatment frequency of secondary mutant tumor cells influencing the eventual clonal composition of the tumor cell population. In xenograft studies, the presence of secondary mutant cells in tumors impaired the therapeutic effect of a clinical PARP inhibitor. However, we found that both PARP inhibitor-sensitive and PARP inhibitor-resistant BRCA2 mutant tumor cells were sensitive to AZD-1775, a WEE1 kinase inhibitor. In mice carrying heterogeneous tumors, AZD-1775 delivered a greater therapeutic benefit than olaparib treatment. This suggests that despite the restoration of some BRCA1 or BRCA2 gene function in "revertant" tumor cells, vulnerabilities still exist that could be therapeutically exploited. Mol Cancer Ther; 16(9); 2022-34. ©2017 AACR.


Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA2/genética , Resistencia a Antineoplásicos/genética , Mutación , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Pirimidinonas , Selección Genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Crit Rev Oncol Hematol ; 108: 73-85, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27931843

RESUMEN

In 2014, olaparib (Lynparza) became the first PARP (Poly(ADP-ribose) polymerase) inhibitor to be approved for the treatment of cancer. When used as single agents, PARP inhibitors can selectively target tumour cells with BRCA1 or BRCA2 tumour suppressor gene mutations through synthetic lethality. However, PARP inhibition also shows considerable promise when used together with other therapeutic agents. Here, we summarise both the pre-clinical and clinical evidence for the utility of such combinations and discuss the future prospects and challenges for PARP inhibitor combinatorial therapies.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Combinación de Medicamentos , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA